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Abstract

The goal of my research is to use the theory of Riemann surfaces and
Abelian functions to address different application problems and to develop
the software tools necessary for computing with these objects.

Abelian functions are periodic functions of n complex variables having
2n independent periods. Although Abelian functions first arose in the
study of Abelian integrals, they find application in many fields of mathe-
matics such as solving non-linear integrable partial differential equations,
complex algebraic geometry, optimization, and more. Algebraic curves
and Riemann surfaces form a natural environment for studying these func-
tions.

In my general examination, I will present the basic theory and algo-
rithms involved in computing with these objects, demonstrate the imple-
mentation of these algorithms in the Python software library “abelfunc-
tions” I developed, and present my objectives for this research.

1 Introduction

The Kadomtsev-Petviashvili (KP) equation is a partial differential equation used
to describe the surface height of a two-dimensional periodic shallow water wave.
Depending on certain physical considerations, which we will ignore, one can
derive either of the following two equations

(−4ut + 6uux + uxxx)x + 3σ2uyy = 0, σ2 = −1, (1.1)

(−4ut + 6uux + uxxx)x + 3σ2uyy = 0, σ2 = +1, (1.2)

where u(x, y, t) is the surface height as a function of position (x, y) and time t.
In the sequel we do not rely on this distinction and we simply refer to the KP
equation.
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The KP equation admits a large family of quasiperiodic solutions of the form

u(x, y, t) = 2∂2
x log θ(Ux+ V y +Wt+ z0,Ω) + c, (1.3)

where θ is the Riemann theta function.

Definition 1.1. The Riemann theta function θ : Cg × hg → C is defined in
terms of its Fourier series:

θ(z,Ω) =
∑
n∈Zg

e
2πi

(
1
2n·Ωn+n·z

)
. (1.4)

This function converges absolutely and uniformly on compact sets in Cg × hg
where hg is the space of all “Riemann matrices” — complex symmetric matrices
with positive definite imaginary part.

From the definition, we see that the Riemann theta function is periodic in
z with integer periods and quasi-periodic in z in the columns of Ω. In other
words, if m,n ∈ Zg then

θ(z +m+ Ωn,Ω) = e
−2πi

(
1
2n·Ωn+n·z

)
θ(z,Ω). (1.5)

A generalization of the Riemann theta function, involving a non-integer shift
in some of its arguments, is referred to as the Riemann theta function with
characteristics.

Definition 1.2. Let α, β ∈ [0, 1)g. The Riemann theta function with
characteristic [ αβ ] is defined as

θ

[
α
β

]
(z,Ω) =

∑
n∈Zg

e
2πi

(
1
2 (n+α)·Ω(n+α)+(n+α)·(z+β)

)

= e
2πi

(
1
2α·Ωα+α·(z+β)

)
θ(z + Ωα+ β,Ω).

Note that θ [ 0
0 ] (z,Ω) = θ(z,Ω). See [4, 16, 17] for further definitions and

properties of the Riemann theta function.
These solutions (1.3) are the so-called finite genus solutions to the KP equa-

tion and families of such solutions exist for every g > 0. In fact, the totality of
solutions of this form are dense the space of all periodic solutions to KP [13].
The constants c ∈ C, U, V,W, z0 ∈ Cg and Ω ∈ hg, as well as the genus g, are
determined from a Riemann surface. Any such Riemann surface can produce a
family of solutions to KP [7]. We postpone the definition of these constants in
terms of known quantities until more machinery is developed in the following
sections.

In general, periodic solutions to integrable partial differential equations are
Abelian functions.
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Definition 1.3. An Abelian function f : Cg → C of genus g ≥ 1 is a
meromorphic function such that there exists 2g vectors w1, . . . , w2g ∈ Cg linearly
independent over the real numbers where

f(z + w) = f(z),

for all z ∈ Cg. When g = 1 these are the elliptic functions.

Abelian functions first arose from the study of Abelian integrals∫ z1

z0

P (z, w)

Q(z, w)
dz,

where P,Q ∈ C[z, w] and z and w are related by an algebraic equation f(z, w) =
0 with f ∈ C[z, w].

Riemann theta functions play a central role in the theory of Abelian functions
in that all Abelian functions can be written as a rational function of the Riemann
theta function and its derivatives (such as in the KP solution above). The
primary focus of my study is the construction and numerical evaluation of these
Abelian functions, particularly those arising in applications.

Abelian functions are applicable in fields other than nonlinear water waves.
For example, they make explicit many computations such as those in the study of
solitary waves, black hole space-times, and algebraic curves. One basic example
is the calculation of bitangent lines of plane algebraic curves; these are useful
for computations in optimization-related fields such as algebraic geometry and
convex optimization. Bitangents can used to represent smooth complex plane
quartic curves as either a symmetric determinant of a linear form or as a sum
of three squares [22]. In convex optimization, bitangents are used to construct
a visibility complex which, in turn, is used to solve the shortest path problem in
Euclidean space [24].

Definition 1.4. A bitangent to a plane algebraic curve C : f(x, y) = 0, f ∈
C[x, y] is a line L ⊂ C that lies tangent to C at at least two distinct points.

By Bezout’s Theorem, if a curve has a bitangent it necessarily must be
of degree at least four [3]. A result of Plücker determines that a degree four
complex curve admits exactly 28 complex bitangents [23]. In particular, Plücker
showed that the number of real bitangents of any real quartic must be 28, 16,
or fewer than 9. The connection between Riemann theta functions and the
bitangent lines of smooth quartics was known to Riemann [2, 26] and, in fact,
can be computed using the tools developed in this research. See Figure 1.1 for
an example.

Finally, Riemann theta functions and algebraic curves can be used to com-
pute linear matrix representations of algebraic curves. A theorem from classical
algebraic geometry states that every homogenous polynomial f ∈ P 2 C[x0, x1, x2]
can be written in the form

f(x0, x1, x2) = det (Ax0 +Bx1 + Cx2) ,
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Figure 1.1: The real graph of the Edge Quartic C : f(x, y) = 25(x4 + y4 + 1)−
34(x2y2 + x2 + y2) = 0 (in blue) and its 28 real bitangents (in grey). Note that
four of them lie tangent to C at infinity. These lines were computed using the
Riemann theta function.

where A,B,C are symmetric complex matrices which can be efficiently com-
puted using Riemann theta functions. Furthermore, when the polynomial has
real coefficients then A,B,C are symmetric real matrices and such represen-
tations are important in the study of spectrahedra — the solution spaces of
semidefinite programs [21].

The purpose of my research is to develop efficient and performant algorithms
for computing with Abelian functions on Riemann surfaces. The computational
tools developed in this research program have far-reaching and varied applica-
tions.

2 Complex Algebraic Geometry

This section serves as a brief introduction to the theory of complex algebraic
curves. Primary references are [10, 29].

2.1 The Projective Line

The primary motivation behind complex projective geometry is to make concrete
the way in which we analyze the behavior of functions, such as polynomials, at
infinity without having to resort to techniques separate from those used at finite
points. For example, in applications we may need to integrate a differential along
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a path on an algebraic curve going to infinity. Knowing the geometry of the
curve at infinity makes such an operation computationally feasible.

In fact, anyone with an elementary complex analysis background has seen
an example of projective geometry. The Riemann sphere is the complex plane
C with a “point at infinity” added. Let z denote the coordinate in C (i.e., the
point z = 0 represents the origin of the complex plane). In order to discuss the
point at infinity we introduce the coordinate w = 1/z. The analysis of some
function at ∞ is equivalent to rewriting the problem in terms of the coordinate
w and examining its behavior in a neighborhood of w = 0. This explains why,
for example, the exponential function

ez =

∞∑
n=0

zn/n!,

though entire in the complex plane, has an essential singularity on the Riemann
sphere since the exponential function in the coordinate w centered at w = 0 is
expressed by the series

∞∑
n=0

w−n

n!
.

This point at infinity is not rigorously defined because it does not make
sense to equate z = ∞. The definition of the Riemann sphere is made explicit
by the following construction: consider the set U = C2−{(0, 0)}. Define the
equivalence relation

(a0, a1) ∼ (λa0, λa1), ∀λ ∈ C−{0}.

Thus two points (a0, a1) and (b0, b1) in U are considered the same if the ratios
a0 : a1 and b0 : b1 are equal. The set of all points (b0, b1) equal to (a0, a1) is
called the equivalence class of (a0, a1) and the complex projective line P1C is the
set of all such equivalence classes. That is,

P1C := C2 / ∼ .

The equivalence class of (a0, a1), called a “point” in P1C, is written (a0 : a1) ∈
P1C. P1C is precisely the Riemann sphere. To see this, consider the two subsets

U0 = {(a0 : a1) ∈ P1C | a0 6= 0},
U1 = {(a0 : a1) ∈ P1C | a1 6= 0}.

For any (a0 : a1) ∈ U0 we have, by the equivalence property,

(a0 : a1) = (1 : a1/a0) = (1 : a).

Similarly, (b0 : b1) = (b : 1) for every point in U1. Every point in the intersection
U0 ∩ U1 can be written in either of these two forms. Each of these subspaces
are isomorphic to C since the maps

φ0 : U0 → C, φ0 ((a0 : a1)) = a1/a0, and

φ1 : U1 → C, φ1 ((a0 : a1)) = a0/a1,
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are continuous bijections with inverses

φ−1
0 (a) = (1 : a), (2.1)

φ−1
1 (b) = (b : 1). (2.2)

Finally, note that (0 : 1) is the only projective point in U1 which is not in U0.
Therefore, we identify U0 with the complex plane (in the coordinate z) and the
point P∞ = (0 : 1) with the point at infinity and set

P1C = U0 ∪ {(0 : 1)} ∼= C∪P∞. (2.3)

Indeed P∞ is considered the point at infinity on the Riemann sphere for if
one considers the image of (0 : 1) under φ0, though undefined since (0 : 1) 6∈ U0,
it maps to z = 1/0 “=”∞. Again, this does not make sense without the complex
projective space construction above but is merely used to illustrate the point.
The coordinate transformation from z to w at the beginning of this section is
equivalent to identifying U1 with the complex plane C and {(1 : 0)} with the
point at infinity, instead.

2.2 The Projective Plane

The natural environment we use in the sequel is not the complex projective line
but the complex projective plane. In this section we construct the projective
plane and examine its geometric properties. The construction is similar to that
of the projective line.

Let U = C3−{(0, 0, 0)}. Following the strategy of the previous section,
consider the set of all ratios (a0 : a1 : a2), that is, the collection of all equivalence
classes under the equivalence relation (a0 : a1 : a2) ∼ (λa0 : λa1 : λa2),∀λ ∈
C−{0}. The space of all such equivalence classes is called the two-dimensional
complex projective space or the projective plane and is denoted P2C.

Define the subsets U0, U1, U2 by

Uj = {(a0 : a1 : a2) ∈ P2C | aj 6= 0},

and note that all (a0 : a1 : a2) ∈ U0 satisfy (a0 : a1 : a2) = (1 : a1/a0 : a2/a0).
We define the bijective mapping

φ0 : U0 → C2,

φ0 ((a0 : a1 : a2)) =

(
a1

a0
,
a2

a0

)
,

φ−1
0 ((x, y)) = (1 : x : y).

The mappings φ1 and φ2 are similarly defined on U1 and U2, respectively. There-
fore, we can identify U0 with the complex plane C2.

Consider the space U c0 = P2C−U0. By definition, every point in U c0 is of
the form (0 : a1 : a2). By definition, every point in U c0 determines a point on
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the complex projective line P1C. The converse is true as well, resulting in the
bijection

(0 : a1 : a2) ∈ P2C ↔ (a1 : a2) ∈ P1C .

By identifying U c0 with P1C we may write

P2C = U0 ∪ U c0 ∼= C2 ∪P1C (2.4)

where U c0
∼= P1C is called the line at infinity, denoted l∞, and U0

∼= C2 is called
the complex affine plane. We may also identify the complex affine plane with
the sets U1 or U2 and the line at infinity with their complements.

We saw a natural geometric interpretation of P1C in the previous section.
Does such an interpretation exist for P2C? Consider a line in the complex affine
plane C2 which can be written in the form

α+ βx+ γy = 0, where (β, γ) 6= 0, α, β, γ ∈ C .

Using the inverse mapping φ−1
0 on C2 we have

x =
x1

x0
and y =

x2

x0
,

where (x0 : x1 : x2) are the coordinates of P2C, and we get the line

αx0 + βx1 + γx2 = 0.

This equation, called the homogenization of the affine curve, makes sense in all
of P2C. Setting x0 = 1 gives the original affine line. On the other hand, setting
x0 = 0 gives the equation

βx1 + γx2 = 0,

which is the equation of the line in l∞. However, this implies x1/x2 = −γ/β.
Hence the projective point (0 : −γ : β) satisfies the equation

αx0 + βx1 + γx2 = 0

and is, in fact, the only projective point in l∞ on the line.
This means that the line “intersects” l∞ at the point (0 : −γ : β) and that

this intersection point depends only on the slope of the affine portion of the line.
Hence, the line at infinity has the geometric meaning that each point on it is
the intersection point of an entire family of parallel lines in C2. This leads to
a generalization of a theorem from classical planar geometry: any two, distinct
lines in P2C intersect at exactly one point.

2.3 Projective Plane Curves

The set of all points (x0, x1, x2) satisfying

αx0 + βx1 + γx2 = 0
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is called a projective line and is a simple example of a projective algebraic
curve (of degree one). In this section we introduce various properties of general
projective curves.

An complex plane algebraic curve is the zero locus of the homogenization
of a polynomial f ∈ C[x, y]. That is, given a polynomial f(x, y) = αn(x)yn +
αn−1(x)yn−1+· · ·+α0(x) its homogenization is the polynomial F ∈ P2C[x0, x1, x2]
where

F (x0, x1, x2) = xd0f(x1/x0, x2/x0).

where d is the degree of F . The homogeneity of F means that we can write

F (x0, x1, x2) =
∑

i+j+k=d

αijkx
i
0x
j
1x
k
2 .

In terms of the projective polynomial F , its affine part can be written
f(x, y) = F (1, x, y). As in the case of a projective line, f can be thought of as
a projection of the polynomial F onto C2 and there is always a one-to-one cor-
respondence between an affine polynomial and its homogenization. Therefore,
a complex plane algebraic curve is the set

C =
{

(x0 : x1 : x2) ∈ P2C : F (x0, x1, x2) = 0
}
.

Important to the study of projective curves, and specifically in the compu-
tational work described here, are singular points.

Definition 2.1. A point a = (a0 : a1 : a2) ∈ C is a singular point of C, or
a multiple point of C, if(

∂F

∂x0
,
∂F

∂x1
,
∂F

∂x2

)
(a) = (0, 0, 0).

Consider the case when a = (1 : 0 : 0) (corresponding to the point (0, 0) in
the affine plane C2) is a singular point of F . The affine poirtion of the curve is

f(x, y) =

d∑
i+j≥2

cijx
iyj .

Note that the constant term is zero since (0, 0) is a point on the affine curve
and the linear term vanishes since (0, 0) is a singular point. We write

f(x, y) = fm(x, y) + fm+1(x, y) + · · ·+ fd(x, y), m ≥ 2,

where each fn is the sum of all terms of f of degree n; that is, terms of the
form cijx

iyj such that i + j = n. The smallest such m with non-zero term fm
appearing in f is called the multiplicity of the singular point (1 : 0 : 0). Sin-
gularities with multiplicity two are called double points, those with multiplicity
three are called triple points, and so on.
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The homogeneous term fm can be factored into linear factors

fm(x, y) =

m∏
j=1

(αjx− βjy).

We call the space fm(x, y) = 0 the tangent cone of the plane curve C at a =
(1 : 0 : 0) consistsing of a finite number of intersecting lines Lj : αjx− βjy.

When a generic affine point a = (1 : c : d) is a singular point we write the
affine curve in the form

f(x, y) =

d∑
i+j≥2

c̃ij(x− c)i(y − d)j

which we can write as a sum of polynomials gn(x−c, y−d) homogenous in x−c
and y − d.

In the case when the singular point a = (0 : 1 : b) ∈ l∞ we repeat the above
process with the affine curve

g(u, v) =
1

xd1
F (x0, x1, x2) = F (u, 1, v), u =

x0

x1
, v =

x2

x1
,

which is a projection of F onto U1
∼= C instead of U0. We write g as a sum of

terms of the form giju
i(v − b)j . Finally, in the case a = (0 : 0 : 1) ∈ l∞ we use

the affine curve

h(w, z) =
1

xd2
F (x0, x1, x2) = F (w, z, 1), w =

x0

x2
, z =

x1

x2
,

and write h as a sum of terms of the form hijw
izj .

Example 2.2. Consider the cubic curve

C : F (x0, x1, x2) = x4
0x

3
2 + 2x3

0x
3
1x2 − x7

1

In complex affine space x0 = 1 this curve is

f(x, y) = F (1, x, y) = y3 + 2x3y − x7.

A plot of f for x, y real is shown in Figure 2.1. For a = (a0 : a1 : a2) we have

∂F

∂x0
(a) = 4a3

0a
3
2 + 6a2

0a
3
1a2,

∂F

∂x1
(a) = 6a3

0a
2
1a2 − 7a6

1,

∂F

∂x2
(a) = 3a4

0a
2
2 + 2a3

0a
3
1. (2.5)
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1
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f(x,y) =0

Figure 2.1: A real plot of the curve C : f(x, y) = y3 + 2x3y − x7. The plot
suggests that (x0 : x1 : x2) = (1 : 0 : 0), corresponding to (x, y) = (0, 0), is a
singular point of C.

First, we find the finite singular points of C. Setting a0 = 1 and solving
the above equations for a1 and a2 we see that p = (1 : 0 : 0) is the only finite
singular point of F . Note that

f(x, y) = f3(x, y) + f4(x, y) + f7(x, y),

f3(x, y) = y3, f4(x, y) = 2x3y, f7(x, y) = −x7,

and that f3, f4, and f7 are homogeneous of degrees 3, 4, and 7, respectively.
Therefore, p is a singular point of multiplicity 3 with

f3(x, y) = y3 = 0,

as the equation for the tangent cone at p. These properties are suggested by
Figure 2.1 where, near the point p, the real curve looks like the intersection of
three curves well approximated by the line y = 0 near the point x = 0.

Setting a0 = 0, the only expression in Equation (2.5) that does not reduce
to zero is

∂F

∂x1
((0, a1, a2)) = −7a6

1 = 0,

implying that the point a = (0 : 0 : 1) is the only singular point at infinity. The
curve at infinity centered at (0 : 0 : 1) is

h(w, z) = F (w, z, 1) = w4 + 2w3z3 − z7.
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The order of this singularity is four since this is the degree of the lowest degree
homogeneous term. The tangent cone at a is g4(w, z) = w4.

2.4 Connection to Riemann Surfaces

There is a close relationship between the study of compact Riemann surfaces and
that of algebraic curves. Recall that a Riemann surface X is a complex manifold
of complex dimension one endowed with an atlas: an open covering {Uα}α∈A
of X together with a collection of homeomorphisms {zα : Uα → C}α∈A, called
local parameters, such that every pair of transition functions

fβ,α := zβ ◦ z−1
α : zα (Uα ∩ Uβ)→ zβ (Uα ∩ Uβ) ,

is holomorphic. The pairs (Uα, zα) are called coordinate charts. In other words,
a Riemann surface is a topological space such that for all P ∈ X there is a
neighborhood of P homeomorphic to an open subset of the complex plane and
one can analytically continue from any P ∈ X to any Q ∈ X via transition
functions.

The Riemann sphere X = C∗ is an example of a Riemann surface. Its atlas
consists of two coordinate charts (U1, z1) and (U2, z2) with

U1 = C, z1 = z,

U2 = (C−{0}) ∪ {∞}, z2 = 1/z.

This is a valid atlas since the transition functions

f1,2, f2,1 : (C−{0})→ (C−{0})
f1,2 = z1 ◦ z−1

2 = 1/z

f2,1 = z2 ◦ z−1
1 = 1/z

are holomorphic on U1 ∩ U2 = C−{0}.
These relationships between curves and Riemann surfaces are embodied by

the following two theorems [10].

Theorem 2.3. (Normalization Theorem.) For any irreducible algebraic
curve C ⊂ P2C there exists a compact Riemann surface X and a holomorphic
mapping

σ : X → P2C,

such that σ(X) = C and σ is injective on the inverse image of the set of smooth
points of C.

A Riemann surface together with the mapping σ is called the normalization
of C. Loosely speaking, the normalization theorem states that an algebraic
curve is a Riemann surface except at the singular points.

Conversely, every compact Riemann surface can be represented by an alge-
braic curve.
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Theorem 2.4. Any compact Riemann surface X can be obtained through the
normalization of a certain plane algebraic curve C with at most ordinary double
points. That is, there exists a holomorphic mapping

σ : X → P2C

such that σ(X) is an algebraic curve possessing at most ordinary double points.

Many of the geometric algorithms presented in this document are designed
to avoid singular points. Except, for example, when we want to integrate a
1-form along a path leading to a singular point in which case we “unwrap” the
singularity using Puiseux series. This is discussed in more detail in the following
section. However, because of this we use the terms “curve” and “Riemann
surface” interchangably.

Additionally, the algorithms presented in this document primarily work with
the affine part f(x, y) of the curve F (x0, x1, x2). If analysis on the line at infinity
is necessary, for example, when computing the singular points of a curve, we
consider an affine projection g of F onto l∞,

g(u, y) = udf(1/u, y) = 0.

Thus, the surface considered here is the branched algebraic y-covering of the
complex x-Riemann sphere, the set of all (x, y)-solutions to the affine polynomial
equation

C = {(x, y) ∈ C | f(x, y) = αd(x)yd + αd−1y
d−1 + · · ·+ α1(x)y + α0(x) = 0},

as x varies along all of C. We treat x and y as the independent and dependent
variables of the equation, respectively.

A point α ∈ C is called a regular point of C if

f(α, y) = 0

has d distinct y-roots y0, . . . , yd−1. A point α ∈ C is called a discriminant point
if it is not regular. The point α =∞ is a regular point of C if

g(0, y)

has d disctinct roots.
A place P is an element of X. For all but finitely many places, P is given

by a pair (α, β) such that f(α, β) = 0. However, some places, particularly those
where α is a discriminant point, instead needs to be represented by a pair of
series (x(t), y(t)) in some local coordinate t. This will be discussed in more
detail in the following section.

3 Computing Period Matrices

This section introduces the concepts and algorithms needed to compute period
matrices of Riemann surfaces. Each subsection examines a major concept be-
hind this calculation and provides a theoretical overview of the component, a
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Period Matrix

1-Forms

Integral Basis

Singularities

Puiseux Series

HomologyMonodromy
Analytic

Continuation

Figure 3.1: The major computations performed by abelfunctions and their
dependencies on one another.

brief description of the algorithm used to compute the component, and examples
presented in Python using the software library abelfunctions.

Please note that abelfunctions, though largely functional, is still in early
stages of development. Therefore, the library syntax presented in this document
may not match the syntax of future versions. Consult the documentation located
at www.cswiercz.info/abelfunctions for up to date information on the package.

The two primary ingredients involved in computing period matrices are a
basis of closed cycles on a Riemann surface X and a basis of holomorphic dif-
ferentials on X. Both of these depend on the components discussed in this
section. The dependency relationship of all of these components is outlined in
Figure 3.1, which forms the outline of this section. The book chapter [5] serves
as a primary reference for this section.

3.1 Puiseux Series

Theory

Every analytic function f = f(x) admits a local Taylor series representation
in a neighborhood about x = α. If the function is meromorphic it still admits
a local series representation in the form of a Laurent series. An extension of
Taylor series are the Laurent series

f(x) =

∞∑
n=N

cn(x− α)n

for some N ∈ Z∪{−∞} depending on α. In both of these situations the variable
x is a local coordinate of f near the point α.

For algebraic curves, local coordinates are given in terms of Puiseux series,
which can be thought of as an extension of Laurent series.
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Definition 3.1. A Puiseux series expansion of a curve C : f(x, y) = 0 at the
point x = α is a collection of j = 1, . . . ,m ≤ d = degyf series of the form

Pj(t) =


xj(t) = α+ λjt

ej ,

yj(t) =

∞∑
k=N

βjkt
njk ,

where N ∈ Z∪{−∞}, α, λj , βjk ∈ C, and ej , njk ∈ Z. Each Puiseux series Pj
is a “place” on C.

A place Pj = Pj(t) satisfies

f
(
Pj(t)

)
:= f

(
xj(t), yj(t)

)
= 0.

When a Puiseux series Pj(t) represents an expansion about a non-singular
(α, βj) on the curve then P (0) = (α, β). This is not necessarily the case
about singular places. We list some additional important facts and properties
of Puiseux series.

• The integer |ej | is called the branching number or ramification index of
the series expansion at that place: |ej | > 1 when x = α is a branch point
of the curve.

• The number of Puiseux series m at a branch point x = α is strictly less
than d = degyf . However, d =

∑m
j=1 |ej |.

• The field of Puiseux series is a splitting field for C[x, y] = C[x][y]. That
is, given any f ∈ C[x, y] and Puiseux series expansions about any x = α
we can write

f(x, y) =

m∏
j=1

ej∏
k=1

(
y − yj

(
(e/λj)

2πik/ej (x− α)
))

,

where the first product ranges over all Puiseux series Pj at x = α and the
second product ranges over all y-components yj(xj) when solving for t in
terms of x. Note that a Puiseux series Pj with ramification index |ej | > 1
splits into |ej | y-series in x.

Algorithm

The algorithm used in abelfunctions for computing truncations of Puiseux series
expansions is based on that of Duval [8]. The main ingredient of the algorithm
are Newton polygons of algebraic curves. We give a brief outline of the process
here.

• The goal of the algorithm is to compute a list of tuples π = (τ1, τ2, . . . , τR)
where τi = (qi, µi,mi, βi, ηi). These tuples define the relations

Xi−1 = µiX
qi
i ,

Yi−1 = (βi + ηiYi)X
mi
i ,
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where i = 1, . . . , R. To obtain the desired Puiseux series we set x = X0,
y = Y0, and t = XR and eliminate the intermediate variablesX1, . . . , XR−1

and Y1, . . . , YR−1.

• The first set of τi computed are those representing the singular part of P ,
that is, the part of the series if the Puiseux series has a ramification index
|ej | > 1. This is done using the Newton polygon method. The output of
this stage of the algorithm provides enough information to distinguish the
Puiseux series expansions at x = α.

• Finally the algorithm computes the regular terms of the Puiseux series
using a standard Taylor series techniques.

Examples

Example 3.2. Consider the curve

C : f(x, y) = y3 + 2x3y − x7 = 0.

As seen in Example 2.2, the point (x, y) = (0, 0) is a singular point of C. The
Puiseux series expansions lying above x = 0 are all of the form

P1(t) =


x(t) = t,

y(t) =
t4

2
− t9

16
+

3t14

128
+ · · · ,

P2(t) =


x(t) = − t

2

2
,

y(t) = − t
3

2
− t8

64
+

3t13

4096
+ · · · .

We compute these expansions using abelfunctions.

1 from abelfunctions import *
2 from sympy.abc import x,y,t
3

4 f = y**3 + 2*x**3*y - x**7
5 alpha = 0
6

7 P = puiseux(f, x, y, alpha, nterms=3, parametric=t)
8

9 print ’Puiseux Expansions at x = \%s:’\%(alpha)
10 for Pj in P:
11 sympy.pprint(Pj)
12 print

Puiseux Expansions at x = 0:
14 9 4

3*t t t
(t, ----- - -- + --)

128 16 2
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2 13 8 3
-t 3*t t t

(----, ----- - -- - --)
2 4096 64 2

MORE EXAMPLES WILL BE INSERTED HERE.

3.2 Singularities

Theory

Recall from Definition 2.1 that a point a on a projective curve C is a singular
point if (

∂F

∂x0
,
∂F

∂x1
,
∂F

∂x2

)
(a) = (0, 0, 0).

For singular points of the form a = (1 : α, β), this is equivalent to

∂f

∂x
(α, β) = 0,

∂f

∂y
(α, β) = 0,

where f is the affine portion of the curve. The singular points of a curve need to
be determined not only for the numerical analytic continuation and integration
methods discussed below, so we can appropriately desingularize the curve C
and obtain a Riemann surface X, but they are also an essential ingredient to
computing a basis of holomorphic 1-forms on X.

A major role of Puiseux series is to provide a local coordinate chart at a
singular point. For singular points of the form a = (1 : α : β) the Puiseux
series expansion Pj of f = f(x, y) such that Pj(0) = (α, β) is a coordinate chart
centered at (x, y) = (α, β). Pj tells us how to approach and pass through (x, y) =
(α, β) on the curve. With this coordinate chart and those at other singular
points of C we can desingularize the curve and thus create an appropriate atlas
for the corresponding Riemann surface X.

For the purposes of computing the genus of X as well as the space of holo-
morphic 1-forms Γ(X,Ω1

X) on X we need to compute the delta invariant and
the multiplicity of a singularity, respectively. The following discussion assumes
the singularity is finite. To analyze infinite singular points we project the curve
C onto the line at infinity l∞ using the method described in Section 2.3.

Branching number. The branching number R of a singular point (α, β)
is the sum of the branch numbers of the Puiseux series expansions centered at
(x, y) = (α, β). That is,

R =
∑
j

Pj(0)=(α,β)

|ej |.
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Multiplicity. As given in Section 2.3, the multiplicity of a singular point
is the degree of the lowest degree non-zero homogeneous term appearing in the
polynomial expression for the curve centered at (α, β).

Delta invariant. The delta invariant δP of a singularity P is the number
of double points concentrated at the singularity. This is equal to the number of
quadratic factors (αix− βiy)2 appearing in the tangent cone at the singularity.
Let S be the set of all singular points, finite and infinity, of C. Then the genus
is given by

g =
(d− 1)(d− 2)

2
−
∑
P∈S

δP . (3.1)

Algorithm

First we determine the finite singularities of C : f(x, y) = 0. Let R(x) be the
resultant of f(x, y) and ∂yf(x, y) [10]. We compute the roots

S = {x ∈ C | R(x) = 0, ∂xR(x) = 0}
= {x1, . . . , xs}.

For each xj ∈ S we compute the y-roots {yj1, . . . , yjd} where d = degyf . The
places (xj , yjk), j = 1, . . . , s, k = 1, . . . , d satisfy

f(xj , yjk) = 0, ∂yf(xj , yjk) = 0,

by the definition of the resolvent. Therefore, the singular places (xk, yjk) are
those that satisfy

∂xf(xj , yjk) = 0.

By definition, these remaining places are the finite singular points of the curve
C. For the infinite case we use the projection of the curve on the line at infinity.
(See Section 2.3.)

The methods used to compute the branching number, multiplicity, and delta
invariant of a singularity rely on examining the leading order behavior of the
Puiseux series expansions such that Pj(0) = (α, β). For the details of these
methods see [5]. In brief the branching number R of singularity is computed
using the above formula

R =
∑
j

Pj(0)=(α,β)

|ej |.

The multiplicity is the sum of the minimum of ej and njN over all Puiseux series
Pj such that Pj(0) = (α, β) where βjN t

njN is the first non-zero, non-constant
term appearing the in yj . The delta invariant is equal to

δ =
1

2

m∑
j=1

rjIntPj − rj + 1,
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where
IntPj =

∑
k=1d,k 6=j

valx
(
yj(x)− ỹk(x)

)
,

with valx(g(x)) equal to the lowest exponent of x appearing in g(x), and yj(x)
is the y-part of Pj when solving for t = t(x). The sum appearing in IntPj is
taken over all Puiseux series expansions Pk at x = α, not just the ones with
Pk(0) = (α, β).

Examples

We compute the finite singularities a = (1 : α : β) and the infinite singularities
a = (0 : 1 : γ) of the curve

C : f(x, y) = y3 + 2x3y − x7 = 0.

1 from abelfunctions import *
2 from sympy.abc import x,y
3

4 f = y**3 + 2*x**3*y - x**7
5 S = singularities(f,x,y)
6

7 for s,(m,delta,r) in S:
8 if s[0] == 0:
9 print ’Infinite Singularity at:’, s

10 else
11 print ’Finite Singularity at: ’, s
12 print ’ multiplicity =’, m
13 print ’ delta invariant =’, delta
14 print ’ branching number =’, r
15 print

Finite Singularity at: (1, 0, 0)
multiplicity = 3
delta invariant = 4
branching number = 2

Infinite Singularity at: (0, 1, 0)
multiplicity = 4
delta invariant = 9
branching number = 1

The genus is computed using the genus() function which, in addition to using
the genus formula in Equation (??), performs additional checks on the genus
using algebraic and geometric properties discussed below.

16 d = 7 # the homogenous degree of f is 7
17 g = (d-1)*(d-2)/2
18

19 for s,(m,delta,r) in S:
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20 g -= delta
21

22 print ’degree =’, d
23 print ’genus =’, g
24 print ’genus(f,x,y) =’, singularities.genus(f,x,y)

degree = 7
genus = 2
genus(f,x,y) = 2

3.3 Holomorphic 1-Forms

Theory

1-forms on a Riemann surface X are objects that can be integrated along piece-
wise smooth paths on X.

Definition 3.3. (1-Form) Let X be a Riemann surface with atlas {(Uα, zα)}.
A 1-form ω on X, also called a differential, is such that in each local coordinate
zα : Uα ⊂ X → C,

ω
∣∣∣
Uα

= fα(zα)dzα,

and the appropriate compatibility conditions are satisfied under the action of
transition functions on Uα ∪Uβ where (Uβ , zβ) is another local coordinate. The
space of all 1-forms on X is denoted Ω1

X .

The space of all holomorphic 1-forms is of particular interest.

Definition 3.4. (Holomorphic 1-Forms) The space of holomorphic 1-forms
Γ(X,Ω1

X) on X is the space of 1-forms ω such that in each local coordinate
(Uα, zα),

ω
∣∣∣
Uα

= hα(zα)dzα

where hα : Uα → C is a holomorphic function.

For a compact genus g Riemann surface X, Γ(X,Ω1
X) is a finite-dimensional

vector space of dimension g over C. Thus, it has a basis of g holomorphic
1-forms {ω1, . . . , ωg}.

For Riemann surfaces obtained by desingularizing and compactifying an al-
gebraic curve C : f(x, y) = 0 these basis holomorphic 1-forms can be written
as

ωk(x, y) =
pk(x, y)

∂yf(x, y)
dx,

where pk ∈ C[x, y] is of degree at most d−3 in x and y. The polynomials pk are
called the adjoint polynomials of f . Note that since y has explicit dependence
on x due to the equation f(x, y) = 0, we can use x as the local coordinate of
the differential.
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Algorithm

One condition on the pk’s is immediately apparent: to preserve holomorphicity
pk must have a zero, with sufficient multiplicity, at the places P = (α, β) where
∂yf(x, y) vanishes. More precisely, Noether showed that if a singular place P
has multiplicity mP then Pk must have a zero of order at least mP − 1 at P
[19].

The technique we use to determine the adjoint polynomials pk uses a theorem
of Mñuk relying on computing an integral basis for the algebraic function field
of the curve [15]. Let A(C) be the coordinate ring

A(C) = C[x, y]/(f)

of the curve C : f(x, y) = 0. The coordinate ring can be though of as the ring
of all functions g ∈ C[x, y] vanishing on the curve f . Note that A(C) is a subset
of the algebraic function field C(x, y).

Given a ring R and a field S such that R ⊂ S, the integral closure R̄ of R
in S is the ring of all elements s ∈ S such that

sn + rn−1s
n−1 + · · ·+ r1s+ r0 = 0,

for some choice of n > 0 and r0, . . . , rn−1 ∈ R. That is R̄ consists of all elements
in S satisfying some monic polynomial equation with coefficients in R. Here,
we consider the integral closure A(C) of A(C) in C(x, y).

Again, we wish to find the set of all adjoint polynomials of C. By [15], these
are the set of all p ∈ C[x, y] such that

A(C)p(x, y) ⊂ C[x, y].

That is, all of the polynomials p such that every element of A(C), when multi-
plied by p and reduced modulo f(x, y), results in a polynomial. Now, A(C) is
a finite extension of A(C). Therefore,

A(C) = β1A(C) + · · ·+ βmA(C), βk ∈ C(x, y).

for an appropriate choice of βk’s in C(x, y). The set {β1, . . . , βm} is called the
integral basis of the integral closure of the coordinate ring. Thus, finding the
set of adjoint polynomials is equivalent to finding polynomials p ∈ C[x, y] such
that

βk(x, y)p(x, y) ∈ C[x, y], ∀j = 1, . . . ,m.

To compute the adjoint polynomials we write

p(x, y) =
∑

i+j≤d−3

cijx
iyj

where d = degyf . We compute an integral basis {β1, . . . , βm} for A(C) using
the algorithm of van Hoeij [30]. The requirement that

βk(x, y)
∑

i+j≤d−3

cijx
iyj ∈ C[x, y]
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imposes a number of conditions on the coefficients cij appearing in the expression
for p(x, y). The set of all possible cij ’s satisfying these conditions for every
βk, k = 1, . . . ,m gives us the adjoint polynomials we need.

Examples

We compute a basis of holomorphic 1-forms on the Riemann surface X given
by the desingularization and compactification of the algebraic curve

C : f(x, y) = y3 + 2x3y − x7 = 0.

1 from sympy.abc import x,y,t
2

3 f = y**3 + 2*x**3*y - x**7
4 X = RiemannSurface(f,x,y)
5 oneforms = X.holomorphic_differentials()
6

7 for omega in oneforms:
8 print ’omega(x,y) =\n’
9 sympy.pprint(omega, use_unicode=False)

10 print
omega(x,y) =

x*y-----------
3 2

2*x + 3*y
omega(x,y) =

3
x

-----------
3 2

2*x + 3*y
From this we can infer that the adjoint polynomials of the curve are p1(x, y) = xy
and p2(x, y) = x3.

3.4 Analytic Continuation

Theory

A path on a Riemann surface is a continuous map γ : [0, 1] → C ⊂ C2. That
is, if γ(t) = (xγ(t), yγ(t)) then f(x(t), y(t)) = 0 for all t ∈ [0, 1]. The roots
of a polynomial are continuous as a function of the coefficients. Therefore, an
x-path xγ : [0, 1] → Cx and an initial y-root y0 ∈ Cy are sufficient for defining
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a path on C for the resulting y-path yγ : [0, 1] → Cy is completely determined
by the curve

f(xγ(t), y) = 0.

The process of deriving this y-path from the data provided is referred to as
analytic continuation.

A closed path γ on a Riemann surface is one such that γ(0) = γ(1). That
is, a path is closed when xγ(0) = xγ(1) and yγ(0) = yγ(1). When constructing
a path using an x-path it may be the case that the x-path xγ(t) is closed in
Cx but the derived y-path yγ(t) may not satisfy yγ(0) = yγ(1). This situation
is described in more detail in Section 3.5 on monodromy groups of algebraic
curves.

Algorithm

To compute a path γ on a Riemann surface C we provide a continuous x-path
xγ(t) and an initial y-value y0 as input and we wish to receive the resulting
y-path yγ(t) as output. Analytic continuation of y0 along γ is a fundamen-
tal operation in abelfunctions since evaluation of and integration along paths
is done frequently. Therefore, it is important to make the construction and
evaluation along paths as fast and efficient as possible.

We use numerical methods to estimate values along yγ(t). In general, the
problem is phrased as given γ(ti) = (xi, yi) as well as some later ti+1 = ti + ∆t
and xi+1 = xγ(ti+1) determine the value yi+1 = yγ(ti+1).

A first and natural approach to solving this problem is to use a root finder.
Given xi+1 we numerically or symbolically solve the equation

f(xi+1, y) = 0.

This produces n y-roots yi+1,1, . . . , yi+1,d over xi+1. However, even if one finds
an effective and fast method for doing this with arbitrary degree polynomials f ,
the main problem with this approach is determining which yi+1,k is equal to the
desired root yi+1. One could argue that the desired root is the one minimizing
|yi+1,k − yi| (the root closest to the previous y-root) but it is conceivable that
this closest can change as a function of ∆t, especially if ∆t is too large.

Another approach could be to use Newton iteration: given xi+1 and an
initial guess yi at xi use Newton iteration on the function g(y) = f(xi+1, y) to
determine yi+1. However, this approach suffers from the same problem, namely,
the root yi+1,k produced by Newton iteration may change as a function of ∆t.
Too large of a ∆t may result in branch jumping, where we converge to the
incorrect y-root. Too small of a ∆t gives an inefficient numerical algorithm.
Further, the definition of “small enough” may change as a function of the curve
C and the x-points xi and xi+1.

To solve the problem of selecting an appropriate ∆t we use Smale’s α-theory
[14]. The purpose of Smale’s α-theory is to answer the following questions about
g(y) = f(xi+1, y) for some finite set of points Y ⊂ C:
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1. From which points in Y will Newton’s method converge quadratically to
some solution to g?

2. From which points in Y will Newton’s method converge quadratically to
distinct solutions to g?

3. If g is real (ḡ = g), from which points of Y will Newton’s method converge
quadratically to real solutions to g?

See [11] for an excellent summary of Smale’s α-theory. Using the notation of
Hauenstein and Sottile, we outline the analytic continuation algorithm here.

1. Assume we know the y-fibre yi = {yi,1, . . . , yi,d} of gi(y) := f(xi, y) = 0.
Fix some initial ∆t and let xi+1 = xγ(ti + ∆t). We wish to compute the
y-fibre yi+1 of gi+1(y) := f(xi+1, y) such that each element yi+1,j is the
analytic continuation of yi,j to xi+1.

2. We first determine if the y-fibre yi is an approximate solution to gi+1(y) =
0. Does each element of yi lie in the quadratic convergence region of
Newton’s method on gi+1?

If not, return to Step (1) with ∆t 7→ ∆t/2.

3. Next, determine if the approximate solutions yi,j will converge to distinct
associated solutions yi+1,j : will the approximate solutions jump branches
or stay on their respective branches?

If not, return to Step (1) with ∆t 7→ ∆t/2.

4. The y-fibre satisfies the necessary conditions for Newton iteration to con-
verge to the appropriate analytic continuations yi+1,j at xi+1. Newton
iterate and output this solution y-fibre.

Note that this algorithm requires analytically continuing all of the y-roots
along an x-path in the complex plane since we cannot determine an appropriate
step size for continuing a given root without knowing the locations of the other
roots. Although this impacts the performance of the algorithm since we have
to perform d sets of Newton iterations at each step, Smale’s α-theory provides
a rigorous method for determining an appropriate step size.

3.5 Monodromy

Theory

At a generic point x = α0 ∈ C a curve C : f(x, y) = 0 has d distinct ordered y-
roots (y0, . . . , yd−1) at α0. This collection of y-roots is sometimes called the lift
of or the fibre above x = α0. However, at a point x = b where both f(x, y) = 0
and ∂yf(x, y) = 0 the number of distinct roots in the lift is strictly less than d.
Such a point x = b is called a discriminant point of f .

A branch point x = b is a discriminant point having the property that if one
were to analytically continue an ordered fibre around some closed path encircling

23



b1

b2

•
•
•

bn

α0

xγ1

xγn

xγ∞

Figure 3.2: The discriminant points b1, . . . , bn with their respective monodromy
paths xγ1 , . . . , xγn and the path xγ∞ around the point at infinity.

b then the elements of the fibre are permuted. Specifically, let xγ : [0, 1]→ C be
a piecewise differentiable oriented closed path in the complex x-plane encircling
a branch point x = b exactly once in the positive direction and let (y0, . . . , yd−1)
be a fixed ordering of the fibre at xγ(0) = b. Then, after analytically continuing
the fibre around xγ and returning to xγ(1) = b, the fibre is equal to

(yπb(0), . . . , yπb(d−1)),

where πb ∈ Sd is a permutation on d elements. In other wods, a branch point is
a discriminant point with πb 6= id.

To analyze the permutation behavior of multiple branch points {b1, . . . , bn}
we start by fixing some base point x = α0 in the complex plane such that α0

is not a branch point and we fix an ordering (y0, . . . , yd−1) of the fibre above
α0. Let xγk : [0, 1] → C be a path encircling only the branch point bk in the
positive direction which does not cross the other paths. Such a path is called a
monodromy path of bk. In the case when x =∞ is a branch point a monodromy
path for ∞ is taken to be a circle going around all of the finite branch points in
the negative direction. See Figure 3.2 for an illustration of these paths.

Analytically continuing the ordered fibre (y0, . . . , yd−1) around each of the
branch points results in n+ 1 permutations

πb1 , . . . , πbn , π∞ ∈ Sd

The group generated by these permutations is called the fundamental group of
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C \{b1, . . . , bn}. It is denoted π1(P1C \{b1, . . . , bn}, α0). Observe that, by the
disjoint path condition on the monodromy paths, moving the base point α0

corresponds to conjugation of the generators of the fundamental group by some
π ∈ Sd. Hence, the monodromy group has explicit dependence on the base
point.

Algorithm

The algorithm implemented in abelfunctions for computing the monodromy
group of a curve is based on the one described in [9]. Due to the technical
nature of the algorithm only a summary is provided here.

• We require that the monodromy paths constructed stay sufficiently far
from the branch points due to the numerical accuracy of Newton’s method
when used in the analytic continuation process. For each branch point, bi
we let

ρi = minj=1,...,n
j 6=i

|bi − bj |.

The minimal distance that any path xγ be from the branch point bi is

Ri =
ρiκ

2

where κ ∈ (0, 1] is a chosen relaxation factor. The implementation of this
algorithm in abelfunctions uses κ = 3/5.

• Let b = bi be the branch point where Re bi < Re bj for all j 6= i. The point
b is referred to as the base branch point. Choose the base point α0 to be
the point α0 = b−Rb, the point on the minimal distance circle encircling
b.

• Order the remaining branch points {bj}j 6=i by increasing argument with
b. This ordering determines the ordering of the monodromy paths xγj .

• Construct a complete graph G with the branch points b1, . . . , bn as nodes
and compute the minimal spanning tree T of this graph with b as the
parent node.

• Using line segments and semi-circles, construct the path xγj encircling bj
once in the positive direction by starting at the base point, following the
minimal spanning tree to bj and using semicircles to traverse over or under
the branch points along the way depending on the ordering. That is, the
path xγj should be constructed in such a way so that the branch points
b1, . . . , bj−1 lie below the path.

• Fix an ordering of the base fibre (y0, . . . , yd−1) above α0 and analytically
continue around each xγj to determine the permutations πj .
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Examples

We compute the monodromy group of the curve

C : f(x, y) = y3 + 2x3y − x7 = 0,

where the permutations πj ∈ π1(P1C \{b1, . . . , bn}, α0) are presented in disjoint
cycle notation.

1 from abelfunctions import *
2 from sympy.abc import x,y,t
3

4 f = y**3 + 2*x**3*y - x**7
5 X = RiemannSurface(f,x,y)
6

7 b = X.branch_points()
8 pi_1 = X.monodromy_group()
9

10 for bj,pi_1j in zip(b,pi_1):
11 print ’branch point:’, bj
12 print ’permutation: ’, pi_1j
13 print

branch point: (-0.31969776999-0.983928563571j)
permutation: [(0, 2), (1,)]
branch point: (0.836979627962-0.608101294789j)
permutation: [(0,), (1, 2)]
branch point: (-1.03456371594+0j)
permutation: [(0,), (1, 2)]
branch point: 0j
permutation: [(0, 2), (1,)]
branch point: (0.836979627962+0.608101294789j)
permutation: [(0,), (1, 2)]
branch point: (-0.31969776999+0.983928563571j)
permutation: [(0, 1), (2,)]
branch point: oo
permutation: [(0, 2, 1)]

The method RiemannSurface.show_paths() plots all the monodromy paths xγj
in the complex x-plane. The base point x = α0 is marked in red.

14 X.show_paths()
<matplotlib.figure.Figure object at 0x107d60810>
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3.6 Homology

Theory

A compact Riemann surface X of genus g is homeomorphic to a sphere with
g handles or, equivalently, a doughnut with g holes. A cycle on X is a closed,
oriented, piecewise smooth curve γ : [0, 1] → X such that γ(0) = γ(1). The
first homology group H1(X,Z) of X is the collection of all cycles on X modulo
homologous transformations. In this document we do not state precisely what
it means for two cycles to be homologous since it involves presenting the basic
theory of simplicial complexes which is beyond the scope of this document.

However, in brief, two cycles on X are homologous if they can be deformed to
each other where the process of deformation not only allows continuous transfor-
mations but the splitting of one cycle into two via “pinching”. A demonstration
of this procedure is shown in Figure 3.3. Two cycles can be added together by
“reversing” the pinching process and negation of a path corresponds to reversing
its orientation. The first homology group H1(X,Z) is the set of all cycles on X
with the addition operation described. The equivalence of cycles on a Riemann
surface is the same as that of closed paths on the complex plane (specifically,
the Riemann sphere) upon which one integrate a fixed meromorphic function g.
Closed paths not encircling a pole of g are homologous to the zero path since
they can be contracted to a point. The set of all paths encircling a single, given
pole are all homologous to each other.
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γ

γ

γ = γ1 + γ2

γ1 γ2

Figure 3.3: A genus g = 2 Riemann surface X with three homologous cycles.
The process of “pinching” and separating a cycle γ into two cycle is allowed.
Cycles can be added together by reversing this pinching process. Negation of a
cycle corresponds to reversing its orientation.
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a1 a2

b1 b2

Figure 3.4: A genus g = 2 Riemann surface X with the basis cycles
{a1, a2, b1, b2} for the first homology group H1(X,Z).

H1(X,Z) has a basis of cycles {a1, . . . , ag, b1, . . . , bg}. That is, every cycle on
X can be written as a finite, integer linear combination of the a- and b-cycles.
These cycles can be chosen such that they satisfy the intersection properties

ai ◦ aj = 0, ∀i 6= j

bi ◦ bj = 0, ∀i 6= j

ai ◦ bj = δij , ∀i, j = 1, . . . , g

where δij is the Kronecker delta. That is, the only cycles that intersect are ai
and bi. A basis of cycles fulfilling these intersection requirements is called a
canonical basis of cycles. Figure 3.4 illustrates the canonical basis for a genus
two Riemann surface.

Algorithm

Tretkoff and Tretkoff [28] provide an algorithm for determining a canonical cycle
basis for H1(X,Z) given the monodromy group of a curve. We omit the details
of the algorithm here. At its core, it computes a graph which encodes how to
travel from the base place of X, chosen to be

P0 = (α0, β0)

where α0 is the base point of the monodromy group of the curve and β0 = y0 is a
fixed root lying above x = α0, to the other places (α0, yi) lying above x = α0 via
traversal around one or more branch points. (These places are sometimes called
the sheets of the surface X with the ith sheet referring to the place (α0, yi)).
A minimal spanning tree of this graph is computed where each removed edge
corresponds to a cycle in H1(X,Z). The is because the addition of an edge to
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the minimal spanning tree forms a cycle in the graph. This graph cycle in turn
represents a possibly a non-zero cycle on X. A separate part of the algorithm
is then used to compute a canonical basis of cycles by taking appropriate linear
combinations of these intermediate cycles.

Examples

We compute a homology basis for the Riemann surface X obtained by desingu-
larizing and compactifying the curve

C : f(x, y) = y3 + 2x3y − x7 = 0.

The a- and b- cycles are presented as a list [. . . , si, (bi, ri), si+1, . . .] where si is
the current sheet number, bi is a branch point of C, ri ∈ Z, and si+1 the the
sheet reached after rotating ri times around bi and returning to the base point
α0.

1 from abelfunctions import *
2 from sympy.abc import x,y,t
3

4 f = y**3 + 2*x**3*y - x**7
5 X = RiemannSurface(f,x,y)
6 a,b = X.homology()
7

8 # print the a-cycles
9 for i in range(g):

10 print ’a_%d:’%(i+1)
11 print a[i]
12 print
13

14 # print the b-cycles
15 for i in range(g):
16 print ’b_%d:’%(i+1)
17 print b[i]
18 print

a_1:
[0, ((-0.31969776999025984-0.9839285635706635j), 1), 2,
((-1.0345637159435732+0j), -1), 1,
((-0.31969776999025984+0.9839285635706635j), -1), 0]

a_2:
[0, (0j, 1), 2, ((-0.31969776999025984-0.9839285635706635j), -1), 0]
b_1:
[0, ((-0.31969776999025984+0.9839285635706635j), 1), 1,
((0.8369796279620464-0.6081012947885316j), 1), 2,
((-0.31969776999025984-0.9839285635706635j), -1), 0]
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b_2:
[0, ((-0.31969776999025984-0.9839285635706635j), 1), 2,
((-1.0345637159435732+0j), -1), 1,
((-0.31969776999025984+0.9839285635706635j), -1), 0, (oo, 1), 2,
((-0.31969776999025984-0.9839285635706635j), -1), 0,
((-0.31969776999025984+0.9839285635706635j), 1), 1,
((0.8369796279620464-0.6081012947885316j), 1), 2,
((-0.31969776999025984-0.9839285635706635j), -1), 0]

We can plot the projection of the cycle in the complex x- and y-planes. In this
example, we plot the cycle a1 by computing 512 interpolating points on the
path. The x-projection xγ is in blue and the y-projection yγ is in green.

1 alpha = X.base_point()
2 betas = X.base_lift()
3 P0 = alpha, betas
4

5 gamma = RiemannSurfacePath((f,x,y), P0, cycle = a[0])
6 gamma.plot(512)

<matplotlib.figure.Figure at 0x106e9cd90>
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3.7 Period Matrices

Theory

Period matrices are matrices obtained by integrating the holomorphic differen-
tials ω1, . . . , ωg along the a-cycles a1, . . . , ag and b-cycles b1, . . . , bg. Define the
g × g matrices

A = (Aij)
g
i,j=1 , Aij =

∮
aj

ωi,

B = (Bij)
g
i,j=1 , Bij =

∮
bj

ωi.

A period matrix of X is the g × 2g matrix

τ = [A B] .

We often normalize the differentials ωi such that Aij = δij which results in the
period matrix

τ = [Ig×g Ω] . (3.2)

This is equivalent to setting Ω = A−1B. The matrix Ω ∈ Cg×g is a Riemann
matrix: an invertible, symmetric complex matrix with positive definite imagi-
nary part. The columns of τ define a lattice

Λ = {Im+ Ωn | m,n ∈ Zg} ⊂ Cg .

This lattice plays an important role in the theory of algebraic curves since the
quotient space

J(C) = Cg /Λ ∼= T2g (3.3)

is the Jacobian or Jacobian variety of the curve C. Jacobian varieties play a
central role in the theory of algebraic curves. For example, the Torelli theorem
[18] states that a non-singular projective curve is completely determined by its
Jacobian. The Schottky problem establishes a link between the Jacobian and
the Kadomtsev–Petviashvili equation by providing conditions on when a given
Riemann matrix is a period matrix of some algebraic curve.

Algorithm

To compute Aij , Bij we first a method for numerically integrating holomorphic
differentials over any given path γ ⊂ C. We only consider finite paths on the
curve: paths with finite x- and y-components. Any such path can be parame-
terized by some parameter t ∈ [0, 1]. Let

γ : [0, 1]→ C, γ(t) =
(
xγ(t), yγ

(
xγ(t)

))
.

(Recall that we treat y as the dependent variable in f(x, y) = 0.) Given this pa-
rameterization, we compute the integral of a holomorphic differential ω. Letting
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x and y represent the local coordinates in C2 we have∫
γ

ω =

∫
γ

ω
(
x, y(x)

)
dx

=

∫ 1

0

ω
(
xγ(t), yγ

(
xγ(t)

))dxγ
dt

(t)dt. (3.4)

In abelfunctions we construct paths γ ⊂ C where xγ either parameterizes
a line from some z0 ∈ C to z1 ∈ C

xγ(t) = z0(1− t) + z1t,

or arcs on a circle of radius R with center w ∈ C

xγ(t) = w +Rei(θ+t∆θ)

where θ is the starting angle and θ+∆θ is the ending angle on the circle. We use
the analytic continuation methods described in Section 3.4 to compute yγ(xγ(t)).
Finally, to compute the integral in Equation (3.4) we use a numerical integrator
of choice. abelfunctions allows one to use any numerical integrator provided
by the scipy Python package that can integrate complex-valued functions. The
Romberg method [1] is chosen by default.

Examples

The RiemannSurface.period_matrix() method returns the matrices A and B
defined above. The Riemann matrix Ω is obtained by computing Ω = A−1B

1 from abelfunctions import *
2 from sympy.abc import x,y,t
3 from scipy import dot
4 from scipy.linalg import inv
5

6 f = -x**7 + 2*x**3*y + y**3
7 X = RiemannSurface(f, x, y)
8 A,B = X.period_matrix()
9 Omega = dot(inv(A), B)

10

11 print ’A =\n’, A
12 print ’B =\n’, B
13 print ’Omega =\n’, Omega

A =
[[ -1.38142275e-12-1.20192474j 1.84957199e+00+0.60096237j]
[ 9.22903420e-12+1.97146395j 7.16176201e-01-0.98573197j]]

B =
[[-0.70647363+2.17430227j -1.84957199+2.54571744j]
[-1.87497364-1.36224808j -0.71617620+0.23269975j]]

Omega =
[[-1.30901699+0.95105652j -0.80901699+0.58778525j]
[-0.80901699+0.58778525j -1.00000000+1.1755705j ]]
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We numerically verify that Ω is a Riemann matrix by computing ‖Ω− ΩT ‖ as
well as the eigenvalues of Im Ω.

14 print norm(Omega.T - Omega)
15 print
16 print eigvals(Omega.imag)

9.303308740879998e-11
[ 0.46490467 1.66172235]

4 Future Work

The software library abelfunctions provides a collection of tools for computing
on Riemann surfaces. Although more features need to be added most of the
package’s functionality is ready to be used to solve problems. In this section, I
present several problems that I wish to address for my thesis:

• Provide solutions to non-linear, integrable, partial differential equations.

• Provide a framework for constructing and computing rational functions
on Riemann surfaces with prescribed poles and zeros.

• Efficiently compute linear matrix representations of plane algebraic curves.

4.1 Solutions to Integrable Partial Differential Equations

We return to the Kadomtsev–Petviashvili (KP) equation given in the introduc-
tory section of this document:

(−4ut + 6uux + uxxx)x + 3σ2uyy = 0.

As mentioned, the KP equation has a large class of quasi-periodic solutions of
the form

u(x, y, t) = 2∂2
x log θ(Ux+ V y +Wt+ z0,Ω) + c. (4.1)

There is a deep connection between the Riemann matrix appearing in the second
argument of the theta function above and period matrices.

Theorem 4.1. (Novikov Conjecture (1965) / Shiota Theorem (1986))
[27] A Riemann matrix Ω ∈ hg is a period matrix if and only if there exists
U, V,W, z0 ∈ Cg and c ∈ C such that

u(x, y, t) = 2∂2
x log θ(Ux+ V y +Wt+ z0,Ω) + c

is a solution to the Kadomtsev–Petviashvili equation.
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That is, the KP equation provides a solution to the Schottky problem: given
a Riemann matrix Ω can we determine if it is a period matrix? In fact, as the
genus g increases the likelihood that a randomly chosen Riemann matrix is a
period matrix decreases. By a simple counting argument,

dimC hg = g(g + 1)/2.

However,
dimC{period matrices} = 3g − 3.

For g = 2, 3 the dimensions are equal and every Riemann matrix is a period
matrix. (This is also the case when g = 1.) However, for g > 3 the space of
Riemann matrices is larger than that of period matrices.

The main point of this discussion is that the Kadomtsev–Petviashvili equa-
tion plays a very important role in the theory of period matrices and establishes
a very strong link between the fields of complex algebraic geometry and inte-
grable partial differential equations.

It is possible to compute the constants appearing in Equation (4.1). Given
a divisor D =

∑
i niPi on X the parameters U, V,W, z0 ∈ Cg and c ∈ C can

be determined by integrating certain meromorphic differentials around certain
paths on X. Deconinck [6] provides a method for determining a divisor from a
set of initial data to the KP equation, thus allowing a more “physical” input to
the solution algorithm. That is, the machinery for computing solutions of the
form above can be used to solve the initial value problem to KP, in some sense.

The algorithms and infrastructure needed to define divisors and compute
these quantities is the first problem I plan to address in my thesis work. Addi-
tionally, I will provide a standardized, programmatical framework for developers
to add their own solution formulas to other integrable partial differential equa-
tions. The tools necessary for computing solutions to KP are the same as those
needed to compute the parameters appearing in other finite genus solution for-
mulas. Therefore, KP is a logical first step to this objective.

4.2 The Schottky–Klein Prime Form

In addition to providing the means of computing paths and 1-forms on a Rie-
mann surface X it is important to have a way of constructing functions, other
than the Abel map, defined on X. For example, is it possible to construct and
subsequently compute meromorphic functions with prescribed zeros and poles
on X? That is, does a function E : X × X → C exist such that E(P,Q) = 0
if and only if P = Q? It turns out that such a function “almost” exists yet
satisfies enough properties to make the function useful.

First we need a special class of theta characteristics.

Definition 4.2. A non-singular odd theta characteristic [δ] := [α, β] is a
theta characteristic where, for a given α, β ∈ {0, 1/2}g,

• ∇θ[α, β](0,Ω) 6= 0 and
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• 4α · β ≡ 1 (mod 2).

A non-singular even theta characteristic is a theta characteristic where,
instead,

4α · β ≡ 0 (mod 2).

With these characteristics in hand, we define the function of interest.

Definition 4.3. The Schottky–Klein prime form E : X×X → C is defined
by

E(P,Q) =
θ[δ]

(∫ Q
P
ω,Ω

)
√
ζ(P )

√
ζ(Q)

=
θ[δ] (A(Q)−A(P ),Ω)√

ζ(P )
√
ζ(Q)

where ω = (ωj)
g
j=1 is the vector of the normalized basis of holomorphic 1-forms

of X, A : X → Cg is the Abel–Jacobi map, and for a given non-singular odd
theta characteristic [δ]

ζ(P ) = ∇θ[δ](0,Ω) · ω(P )

=

g∑
j=1

∂

∂zj
θ[δ](0,Ω)ωj(P ).

Unfortunately, E is not holomorphic on X × X nor is it even well defined
in part because it depends on the choice of path from P1 to P2. However, it is
holomorphic and well-defined on X̃ × X̃ where X̃ is the universal cover of the
Riemann surface X which, in this case, is the cut surface X̂. The good news
is that the zeros of E are independent of the choice of representative from the
universal cover: if (P̃1, Q̃1) ∈ X̃ × X̃ and (P̃2, Q̃2) ∈ X̃ × X̃ have the same
projection (P,Q) ∈ X ×X then E(P̃1, Q̃1) = 0 if and only if E(P̃2, Q̃2) = 0.

As a result, one can use the Schottky–Klein prime form to define meromor-
phic functions on a Riemann surface X. Let P1, . . . , Pm, Q1, . . . , Qn ∈ X. Then
the function

f : X → C, f(P ) =

∏m
i=1E(P, Pi)∏n
j=1E(P,Qj)

has zeros at the places P1, . . . , Pm and poles at the places Q1, . . . , Qn. The
ability to efficiently construct and quickly evaluate the prime form would make
rational functions on Riemann surfaces as computationally accessible as Abelian
functions.

4.3 Linear Matrix Representations

The Schottky–Klein prime form appears in the construction of linear matrix
representations of certain plane curves. Every complex homogeneous polynomial
in three variables can be written as

F (x, y, z) = det (Ax+By + Cz)
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Figure 4.1: A real plot of the Helton-Vinnikov curve f(x, y) = x4 +x2y2−3x2 +
y4 − 3y2 + 2. The region bounded by the innermost oval is a spectrahedron.

where A,B,C are symmetric matrices [25]. Such a representation is called a lin-
ear matrix representation. Linear matrix representations of polynomials appear
in problems in control theory and can be used to solve polynomial inequalities
via semi-definite programming [12, 21].

The curves we consider here originate from spectrahedra. A two-dimensional
spectrahedron is a subset of R2 bounded by rigidly convex algebraic curves; real
curves with a maximal number of nested ovals in the real plane. The interior of
the innermost oval of such a curve defines a spectrahedron. For example, the
real projective curve

F (x0, x1, x2) = 2x4
0 + x4

1 + x4
2 − 3x2

0x
2
1 − 3x2

0x
2
2 + x2

1x
2
2,

of degree four with affine part

f(x, y) = x4 + x2y2 − 3x2 + y4 − 3y2 + 2,

has 4/2 = 2 nested ovals, as shown in Figure 4.1. These curves are called Helton–
Vinnikov curves and, by the Helton-Vinnikov theorem, completely characterize
all two-dimensional spectrahedra [12].

In some applications, it is preferred to have the matrices A,B,C be real when
the curve F is real. The representations important to studying spectrahedra also
require that the linear matrix representation is a real definite representation;
that is, that the span of A,B, and C contain a real positive definite matrix.
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Plaumann, Sturmfels, and Vinzant [21] study several approaches to computing
real definite matrices of Helton–Vinnikov curves.

The approach chosen by Helton and Vinnikov gives a positive definite linear
matrix representation of a Helton-Vinnikov curve in terms of theta functions
and the Schottky–Klein prime form.

Theorem 4.4. (Helton–Vinnikov) Let C : f(x, y, z) = 0 be a real homoge-
neous curve of degree d with f(1, 0, 0) = 0 and assume

1. C is a Helton–Vinnikov curve with the point f(1, 0, 0) = 0 inside the
innermost oval,

2. the d real intersection points with the line {z = 0} are distinct non-singular
points Q1, . . . , Qd with coordinates Qi = (−βi : 1 : 0), βi 6= 0,

3. δ is an even theta characteristic with θ[δ](0,Ω) 6= 0.

Then,
f(x, y, z) = det (Ix+By + Cz) ,

where I is the d × d identity matrix, B = diag(β1, . . . , βd), and C is a real
symmetric matrix with diagonal entries

cii = βi
∂zf(−βi, 1, 0)

∂yf(−βi, 1, 0)
,

and off-diagonal entries

cjk =
βk − βj
θ[δ](0,Ω)

θ[δ](A(Qk)−A(Qj))

E(Qj , Qk)
,

where E : X ×X → Cg is the Schottky–Klein prime form.

The calculation of linear matrix representations of Helton–Vinnikov curves is
an excellent application of the Schottky–Klein prime form and I aim to provide
an algorithm for doing so.

4.4 The Constructive Schottky Problem

As mentioned, the KP equation provides a means for determining if a Riemann
matrix Ω ∈ hg comes from the period matrix of some Riemann surface X. The
question can be asked, can we find a curve C : f(x, y) = 0 producing this period
matrix. This question is called the Constructive Schottky Problem. That is,

Given a Riemann matrix Ω ∈ hg can we find a curve C : f(x, y) = 0
with Ω as its period matrix?

This is a long-term endeavor. Regardless, I aim to examine possible avenues for
addressing this problem.
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Boston, MA, 1983.

[18] DavidB. Mumford, Appendix: Curves and their jacobians, The Red Book of
Varieties and Schemes, Lecture Notes in Mathematics, vol. 1358, Springer
Berlin Heidelberg, 1999, pp. 225–291.
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